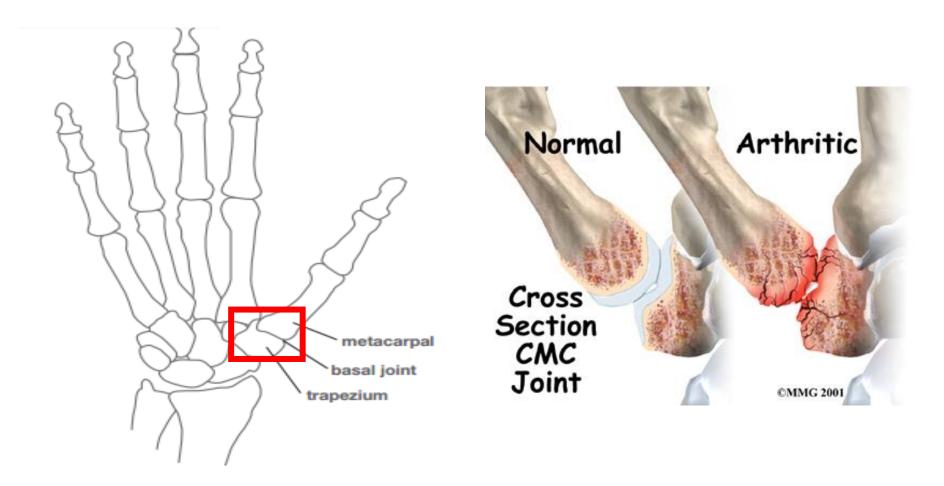
Pain Alleviation Mechanism for CMC Arthritis Patients

Keshav Kohli, Puneet Kumar, Reith Sarkar


Client: Tiffany Harmon

Outline

Overview of Need and Chosen Design

- Details of Analysis Needed for Design
- Details of Chosen Design
- Material and Manufacturing Considerations
- Conclusions and Future Directions

CMC Arthritis

Overview of Need

"I have been working with patients for over 10 years that have expressed frustration with the lack of conservative options for the pain they experience with [CMC arthritis]."

-Tiffany Harmon, OT

Standard for conservative therapy is splinting

Overview of Need

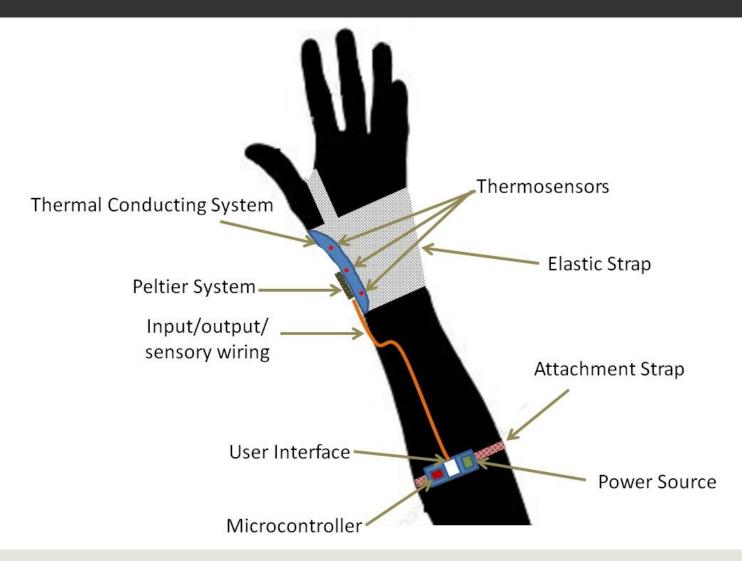
Need for user-controlled pain alleviation system which can be used along with existing CMC arthritis splints.

Specific Design Specifications

Temperature Therapy

- Heat between 95 110 °F
- Heating element should ramp to desired temp on order of min.
- Heat should be localized around CMC joint

Microcontroller

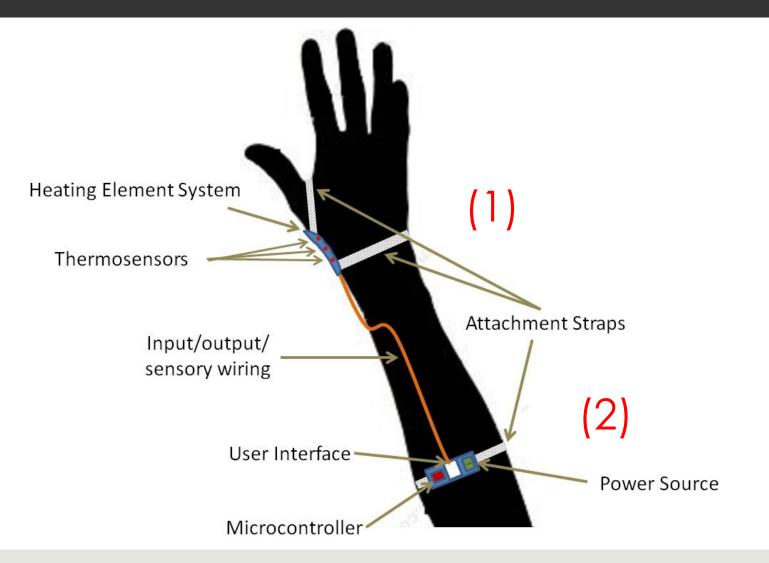

- Programmable
- User controlled (input variable set points)
- Pulse width modulation capabilities
- Sensor sampling at < 1 Hz</p>

Mechanical Considerations

- Electrically insulated
- Durable housing for microcontroller unit
- Wearable and comfortable on both hands

Retail Cost – ideally should be below \$250

Previous Chosen Design Concept


Alternative Option

Resistive Heating

- Heat therapy (no cold capabilities)
- Applied current through conductor induces heat
 - Heat released is proportional to resistance
- Lower power requirements, durable, inexpensive

Final Chosen Design Concept

Outline

Overview of Need and Chosen Design

Details of Analysis Needed for Design

Details of Chosen Design

Material and Manufacturing Considerations

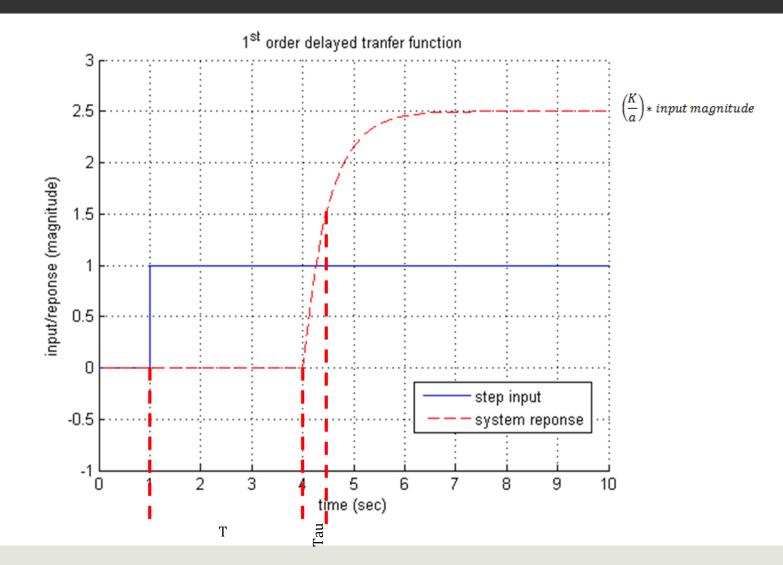
Conclusions

Power Requirement Calculations

- Device will be used for approx. 4 times a day for 15-30 minutes (2 hours total)
- From spec sheet of resistive heating element:
- Minimum voltage required is 5V (to operate efficiently)
- Maximum amperage is 1A

 $\frac{x \, mAh}{1000 \, mA} * 0.5 \ge 2 \, hours$

 $x \ge 4000 \ mAh$


Thus, battery should supply $\geq 4000 \ mAh$

To maximize power efficiency

- Battery provides DC pulses at a specific frequency instead of a constant pulse
- Must experimentally determine appropriate PWM frequency

$$T(s) = \frac{K}{s+a}e^{-sT}$$

- Assume first order delayed time system
- **K**, **a**, **and T** determined graphically

input magnitude = 1

$$\tau$$
 (time constant) = $\frac{1}{a}$ = time to 63.2% of steady state value
steady state = $\left(\frac{K}{a}\right) *$ input magnitude = $\left(\frac{K}{a}\right) * 1$
 $T = delay time = 3 seconds$
 $\tau = 0.5 seconds = \frac{1}{a}$
 $\therefore a = natural frequency = 2$
 $steady state = 2.5 = \left(\frac{K}{a}\right) = \left(\frac{K}{2}\right)$

 $\therefore K = magnitude = 5$

$$\therefore Tranfer Function \to T(s) = \frac{5}{s+2}e^{-3s}$$

From knowing natural frequency a, we can choose appropriate PWM frequency

Appropriate PWM frequency = 10 * *a*

Can make duty cycle calibration curve, and implement it into script that microcontroller operates

Temperature differential vs. Duty cycle

Weight

Housing Unit			
Plastic Casing	47.63 g		
Battery	190 g		
Heating Element			
Wire	0.2425 g		
Misc.			
РСВ			
Buttons, LCD, switch			
Polyester fabric	~ 15 g		
Total	252.87 g		

A bit more than the weight of an **orange**

Sampling Speed

What is a reasonable amount of samples we need to take?

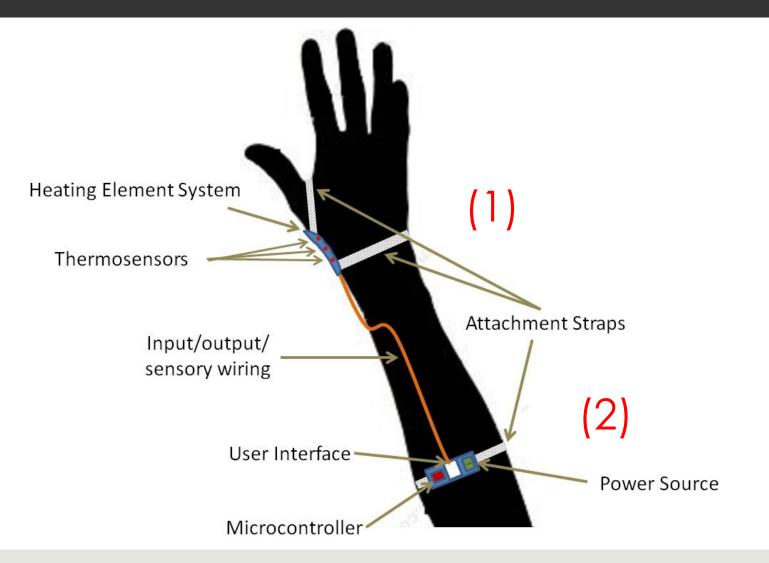
- Temperature is relatively steady state
- Sampling speed of thermistors:

Sampling speed < 1 Hz is ideal

Chose 0.2 Hz (take reading every 5 seconds)

Outline

Overview of Need and Chosen Design

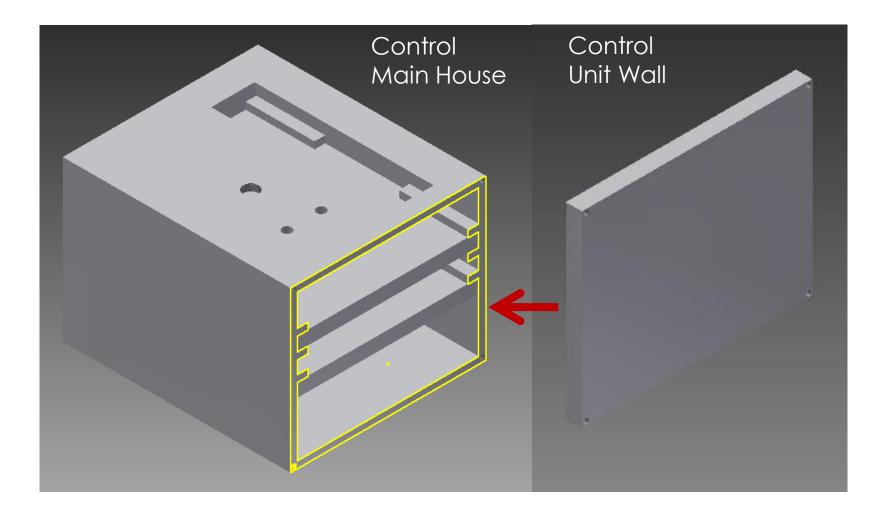

Details of Analysis Needed for Design

Details of Chosen Design

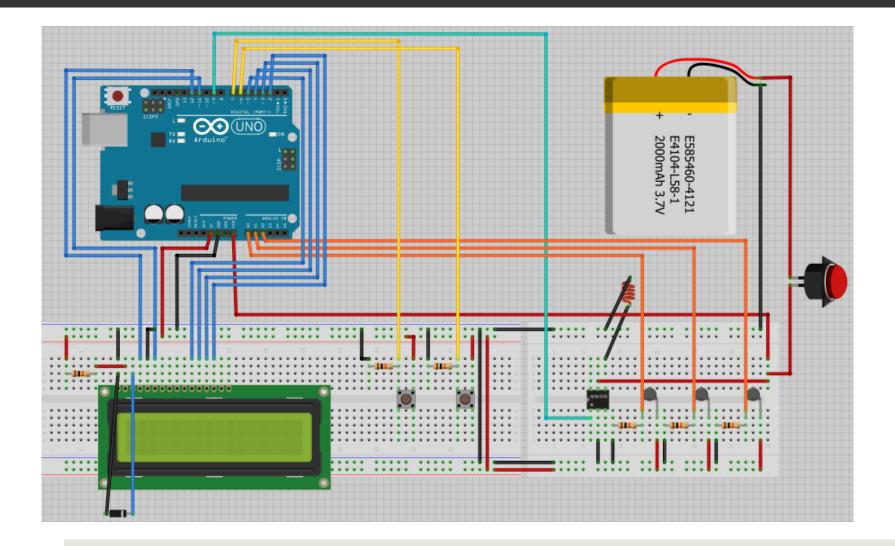
Material and Manufacturing Considerations

Conclusions

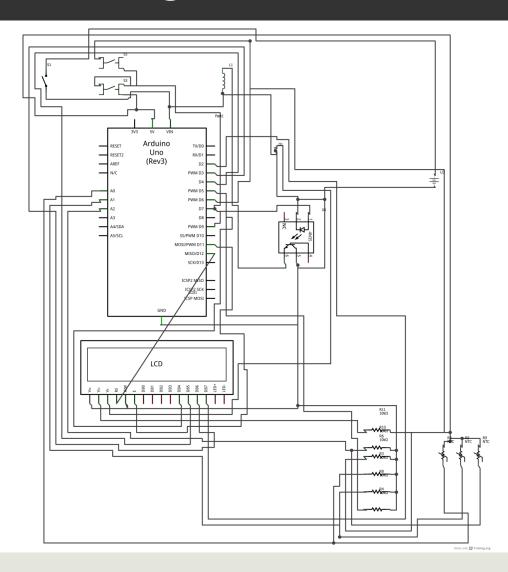
Final Chosen Design Concept


Housing Unit – CAD Drawings

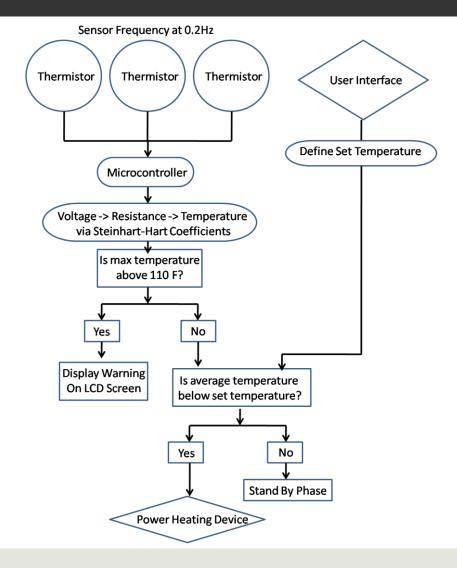
Control Main House


User-interface component surface

PCB component surface


Housing Unit – CAD Drawings


Circuit Design


Circuit Design

PCB Board Design

Software Overview

Power Supply

Lithium-ion vs. Nickel-cadmium battery

	Li-ion	NiCad		
Nominal cell voltage:	3.6 / 3.7 V	1.2 V		
Cycle durability:	400-1200 cycles	2,000 cycles		
Specific power:	~250-~340 W/kg	150 W/kg		
Charge / discharge	80-90%	70–90%		
efficiency:				
Self-discharge rate:	8% at 21 °C, 15% at 40 °C,	10% per month		
	31% at 60 °C (per month)			
Energy density:	250-620 W•h/L	50–150 W∙h/L		
Specific energy:	100-250 W•h/kg	40–60 W•h/kg		
Disposal:	Non-hazardous waste	Hazardous waste		
Maintenance:	Does not need periodic	Requires full discharge		
	discharge	before recharge		
Weight:	20%-35% less than Nicad	Heavier than Li-ion		
Memory effect:	Do not suffer from memory	Suffer from memory effect		
	effect			

Power Supply

Lithium-ion safety concern:

- If a Li-ion battery is overcharged, it can overheat and in certain cases ignite.
- This safety concern can be mitigated with the implementation of a specific built-in IC chip to the battery.
- This IC-chip prevents over charge and over discharge.

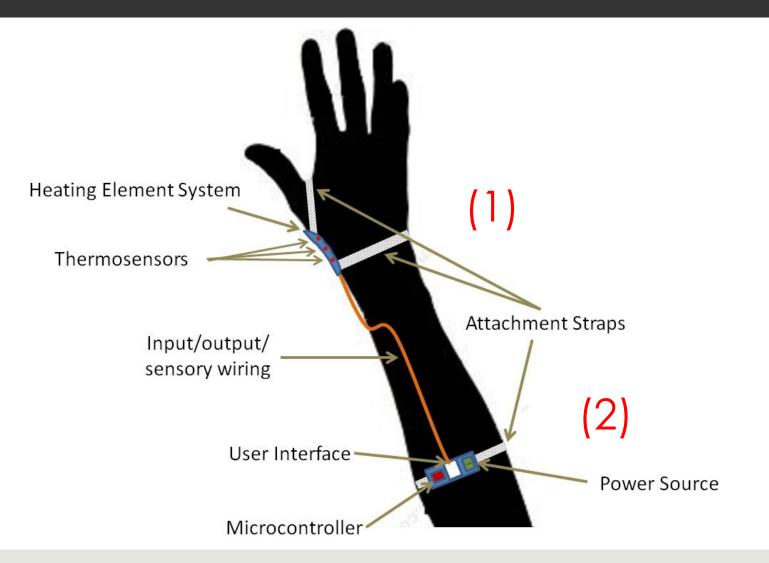
Power Supply

Power Supply Requirements

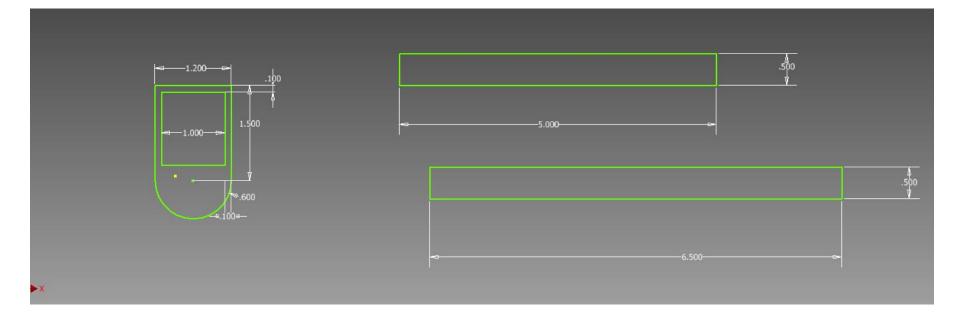
- $\square \geq 4000 \, mAh$
- Minimum voltage of 5V

Lithium-ion Battery

- 5200 mA-hour
- □ 7.4 V
- Built-in IC chip for safety
 - Prevents over charge and over discharge
- Rechargeable battery

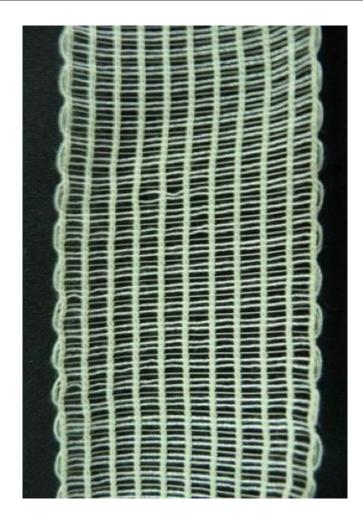


Velcro Straps for Arm



"3 inch Velcro cinch strap"

Final Chosen Design Concept


Heating Element Drawings

Resistive Heating Wire

Insulated Steel Mesh

- "Ultra Heating Fabric"
 - Patented steel-polymer fiber composite conductive yarn
 - Light, thin, durable
 - Electrically Insulated

Polyester Fabric

- "Accordion Shirting Black"
- 100% polyester
- Lightweight
- Low thermal conductivity
- Will cover heating element to provide comfort and some thermal insulation

Velcro Straps for Hand

"Nylon Velcro Cinch Strap"

Designsafe Analysis

	Initial Assessment			Final Assessment		Status /
Hazard /	Severity			Severity		Responsible
Failure Mode	Probability	Risk Level	Risk Reduction Methods	/Comments	Probability	Risk Level
Physician's Assistant	biological / health : unsanitary conditions	Moderate	Low		Minor	Negligible
diagnose patient condition(s)	Lack of sanitization before use	Unlikely			Unlikely	
Physician's Assistant	electrical / electronic : energized equipment / live parts	Moderate	Low		Minor	Negligible
monitor patients	Electrical components	Unlikely			Unlikely	
Physician's Assistant	electrical / electronic : water / wet locations	Moderate	Low		Minor	Negligible
monitor patients	If components not kept dry	Unlikely			Unlikely	
Physician's Assistant	electrical / electronic : overvoltage /overcurrent	Moderate	Low		Minor	Negligible
monitor patients	If too much current drawn	Unlikely			Unlikely	
Patient	mechanical : pinch point	Minor	Negligible		Minor	Negligible
All Activities	If Velcro clasp is pinched against skin	Unlikely			Unlikely	
Patient	electrical / electronic : energized equipment / live parts	Serious	Medium	Isolate electrical components from user	Serious	Low
All Activities	Electrical Components	Unlikely			Remote	
Patient	electrical / electronic : water / wet locations	Serious	High	Warn patient well of danger of water	Serious	Medium
All Activities	If components not kept dry	Likely			Unlikely	
Patient	electrical / electronic : overvoltage /overcurrent	Serious	Medium	Internal mechanism to shut off device	Serious	Low
All Activities	If too much current drawn	Unlikely			Remote	

Outline

Overview of Need and Chosen Design

Details of Analysis Needed for Design

Details of Chosen Design

Material and Manufacturing Considerations

Conclusions

Part Prices - Prototyping

Part	Price/one Quantity Total cost (\$)		
LCD	8	1	8
temp up/down buttons	0.35	2	0.7
battery	32.49	1	32.49
charger	19.99	1	19.99
optocoupler	3.21	1	3.21
3 toggle switch	4.6	1	4.6
resistors	0.09	6	0.54
thermistors	1.38	3	4.14
diode	0.13	1	0.13
jumper wires (kit)	2.5	1	2.5
Arduino Uno	27.09	1	27.09
Large Velcro Strap (Wrist)	2.598	1	2.598
Small Velcro Straps (Hand)	0.1	2	0.2
Fabric (Polyester)	0.005029	3	0.015087
Heating Fabric	3.95	1	3.95
Total Prototype Cost			\$107.56

Estimated lead time for all shipped products ~ 2 weeks

Part Prices – Commercialization

Part	Price/oneQuantity Total cost (\$)		
LCD	8	1	8
temp up/down buttons	0.35	2	0.7
battery	32.49	1	32.49
charger	19.99	1	19.99
optocoupler	3.21	1	3.21
3 toggle switch	4.6	1	4.6
resistors	0.09	6	0.54
thermistors	1.38	3	4.14
diode	0.13	1	0.13
jumper wires (kit)	2.5	1	2.5
PCB board	13.14	1	13.14
ABS Plastic Housing	4.24	1	4.24
Undercut Flathead, S.S. 4-40 thread, length 3/16"	0.1462	3	0.4386
Flathead, S.S. 2-56 thread, length 5/16"	0.0772	4	0.3088
ABS Plastic Wall	2.5	1	2.5
Large Velcro Strap (Wrist)	2.598	1	2.598
Small Velcro Straps (Hand)	0.1	2	0.2
Fabric (Polyester)	0.005029	3	0.015087
Heating Fabric	3.95	1	3.95
Voltage Converter Chip	17.32	1	17.32
PIC Chip	1.84	1	1.84
Total Manufacturing Cost			\$122.85

Estimated lead time for all shipped products ~ 2 weeks

Manufacturing Processes

Fritzing Fab – PCB board

Would have to solder individual components onto PCB board

Protomold – Housing

Injection molding with ABS plastic

WireKinetics – Resistive heating element

Cut specific area and assemble

Outline

Overview of Need and Chosen Design

Details of Analysis Needed for Design

Details of Chosen Design

Material and Manufacturing Considerations

Conclusions

Need for **user-controlled pain alleviation system** which can be used **along with existing CMC arthritis splints**

Delivered:

- Heat therapy system
 - Allows for user input of variable set points
 - Temperature regulation by microcontroller
- Heating element is thin, light, durable
 - Compatible with CMC splints

Need for **user-controlled** pain alleviation system which can be used **along with existing CMC arthritis splints**

Delivered:

- Heat therapy system
 - Allows for user input of variable set points
 - Temperature regulation by microcontroller
- Heating element is thin, light, durable
 - Compatible with CMC splints

Need for user-controlled pain alleviation system which can be used along with existing CMC arthritis splints

Delivered:

- Heat therapy system
 - Allows for user input of variable set points
 - Temperature regulation by microcontroller
- Heating element is thin, light, durable
 - Compatible with CMC splints

Need for <u>user-controlled</u> pain alleviation system which can be used along with existing CMC arthritis splints

Delivered:

- Heat therapy system
 - Allows for user input of variable set points
 - Temperature regulation by microcontroller
- Heating element is thin, light, durable
 - Compatible with CMC splints

Yes, but room for future improvements!

IP Considerations

- Most of the intellectual property used in this design is already patented
- We are using design components that we will have to license from other companies (i.e. battery, Velcro straps, resistive heating wire, etc.)
- At this phase, we are not concerned with IP protection because nothing in our design is novel technology; rather, it is an application of several technologies

Lessons Learned

- We were too eager to pursue the Peltier option
 - Lack in consideration for power requirements
 - Too committed to the idea of integrating both heating and cooling modalities
- Learned that when designing a product, we must be truly open to considering all design options
- Eliminate client bias in choosing a design option

Future Directions

We have:

- CAD drawings for all design components
- Required part pricing and lead times
- Assembly method

Opportunity for:

- Second design team to continue to prototyping phase
- Revision of design to better fit prototyping requirements
- Eventual large scale production via startup company

References

http://forum.arduino.cc/index.php/topic,7530.0.html http://www.chm.davidson.edu/vce/calorimetry/heatcapacity.html http://www.instructables.com/id/Arduino-LCD-Thermostat/ http://www.junun.org/MarkIII/Info.jsp?item=35 https://www.sparkfun.com/products/97 https://www.sparkfun.com/datasheets/Components/General/00097.jpg http://www.all-battery.com/universalfastsmarttlp3000chargerforli-ionli-polymerbatterypack148v4cells.aspx http://www.futureelectronics.com/en/optoelectronics/optocouplers.aspx http://www.mouser.com/ds/2/60/7000Toggle 27aug13-241455.pdf http://www.monsterscooterparts.com/xlr-charging-socket.html http://www.monsterscooterparts.com/xlrchco.html http://www.pcbheaven.com/picpages/Choosing the right PIC/ http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en010208#documentation http://www.mouser.com/ProductDetail/Microchip/PIC16F627A-I-P/?qs=z30FE1aq6wb1i5D8d8cBNw%3D%3D&gclid=CluYu_rVgrsCFYs-MgodLVYA3g http://www.mouser.com/ProductDetail/Fairchild-Semiconductor/1N4001/?gs=PKwgOmPR8%252bnXpabSf4kJpg%3d%3d&gclid=CL70wInZgrsCFeZFMgod6y8AO http://www.amazon.com/Generic-Dupont-Female-Male-Connector-Arduino/dp/B00DPBK02Y/ref=sr 1_8?ie=UTF8&gid=1385953803&sr=8-8&keywords=breadboard+jumper+wire+pack http://www.securecableties.com/Hook-and-Loop/24-x-3-Inch-Cinch-Straps-5-PackpID953.aspx?gclid=CJj8n8fZkLsCFYUWMgodiV0AKg http://www.alibaba.com/product-gs/463609343/Nylon Velcro Cinch Straps.html?s=p http://www.mcmaster.com/#machine-screws/=pmivr3

Questions?