
Pain Alleviation in Carpometacarpal (CMC) Arthritis

Puneet Kumar, Reith Sarkar, Keshav Kohli Client: Tiffany Harmon, OT 10/30/13

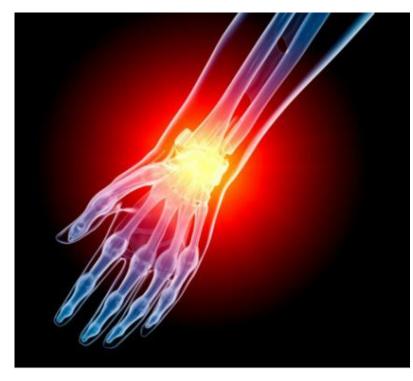
CMC Arthritis

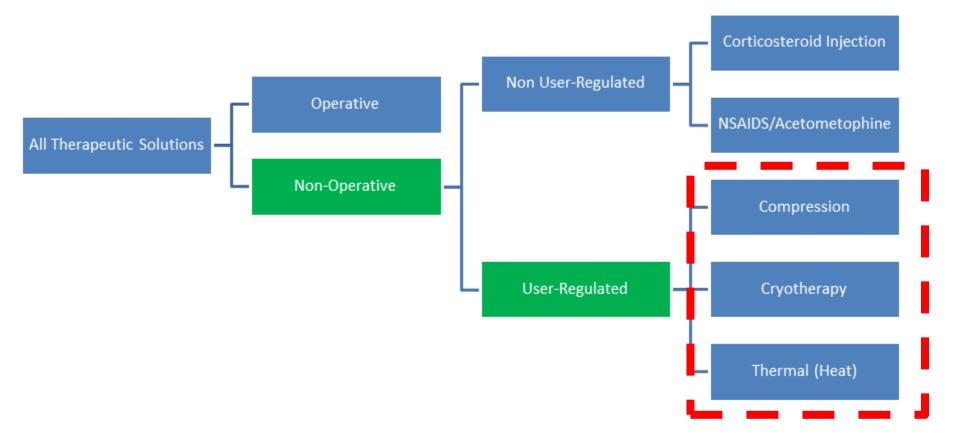
- Osteoarthritis (OA) of Carpometacarpal (CMC) joint
 - Degradation of cartilage layer
 - Direct contact between bones
 - Pain
 - Deformity
 - Affects range of motion and ability to pinch
 - Patient Population largely Postmenopausal Women
 - ¼ Women will experience some form of CMC arthritis

Overview of Need

"I have been working with patients for over ten years that have expressed frustration with the lack of conservative options for the pain that they experience with [CMC arthritis]."

- Need for user-controlled pain alleviation system which can be easily used with existing CMC arthritis splints.




General Design Requirements

General metrics

- 1. Durability
- 2. Cost
 - a. <\$250
- 3. Safety
- 4. Active/passive adjustment
- 5. Feedback possible
- 6. General Methods of Pain Alleviation
 - a. inflammation reduction
 - b. joint stabilization
 - c. increase of circulation

Selection Tree for Type of Therapy

Compressional

- Pain relief through mechanical means
- Compression can:
 - o reduce inflammation
 - increase circulation
 - suppress fluid retention
- Potential risks
 - if compression (static) is too prolonged circulation can be hindered
 - possible electrocution if insulation damaged

Examples of Compressional Therapy

Static Compression

Dynamic Compression

iPalm520 Hand Massager

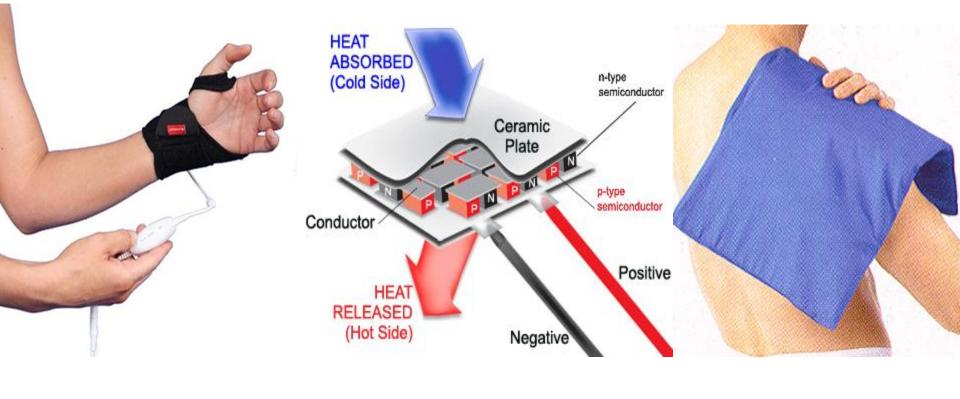
Cryotherapy

- Lowering of temperature at local affected region
 - o Decreases cellular inflammation processes
 - o Promotes vasoconstriction
 - o Nerve signal transduction slowed
 - o Norepineprhine (Stress hormone) levels increased
 - reduces pain sensitivity
- Reduction of inflammation reduces pain intensity and frequency
- Potential Risks:
 - o tissue damage if cold temperature applied to affected area for too long
 - o if electrical system involved: potential electrocution risks if wire insulation damaged

Examples of Cryotherapy

Hilotherapy

Ice Pack



Thermal Therapy

- Increasing of temperature at local affected region
 Direct application of heat to the body
- Reduction of Pain:
 - Vasodilation flushes out fluid from site, lowering inflammation
 - Increases oxygen supply to tissue
 - o Eliminates CO2 and metabolic waste
- Potential Risk:
 - o Mild burning of skin if mishandled

Example of Thermal Therapies

Infrared

Peltier

Resistive

Pugh Chart of Therapy options

	Weight	Compression	Cryotherapy	Thermal	
Safety	10	8	5	7	
Cost	5	8	5	5	
Ease of Use	6	9	8	8	
Client's Opinion	7	7	10	10	
Therapeutic Value	8	6	8	10	
Totals	N/A	271	257	293	

Specific (Thermal) Design Requirements

Temperature

 max/min: > 45–50°C (113–122 °F) or < 0°C (32°F) can INJURE tissue and local nerves

• heat application:

o 15-30 min duration, 4 times/day

• cold application:

10 min duration, 6 times/day

Sensor

sensory frequency <1Hz

Heat Sink

necessary for certain technologies

Resistive Heating

•Passes electric current through a resistor to release conductive heat

•Electrical energy is converted to heat

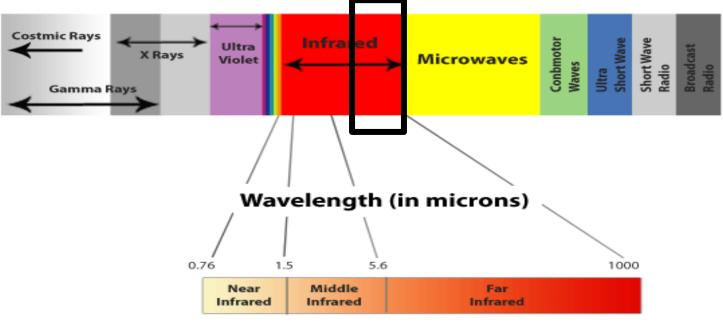
Heat released is proportional to resistance

•Examples: electric blanket, heated gloves

Resistive Heating

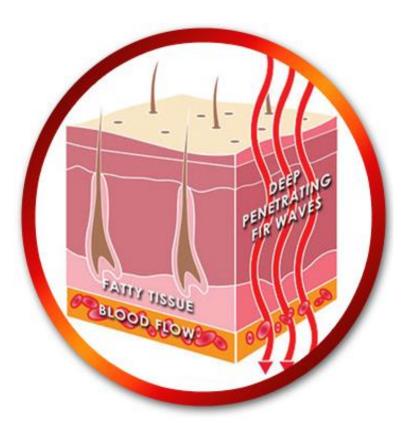
Major Pros: Simple, Durable, Effective Major Cons: No cold capabilities

Far Infrared Heating

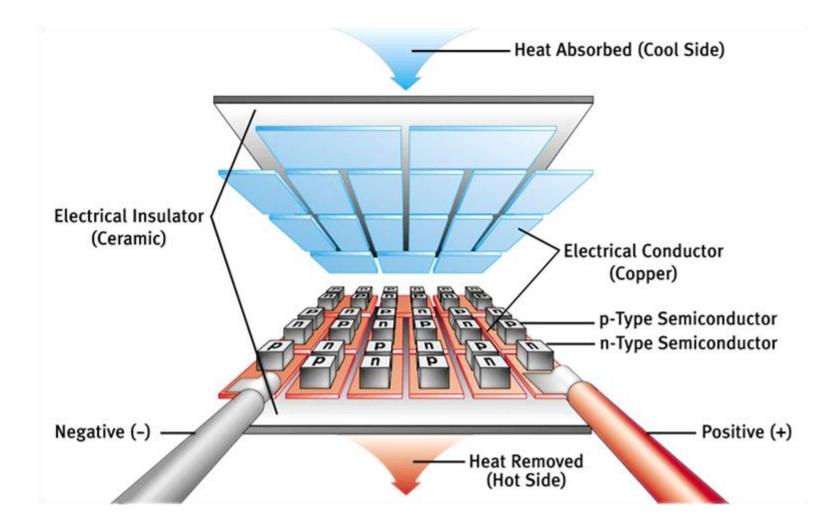

•Electromagnetic radiation

 \odot Frequency 20 THz to 300 GHz

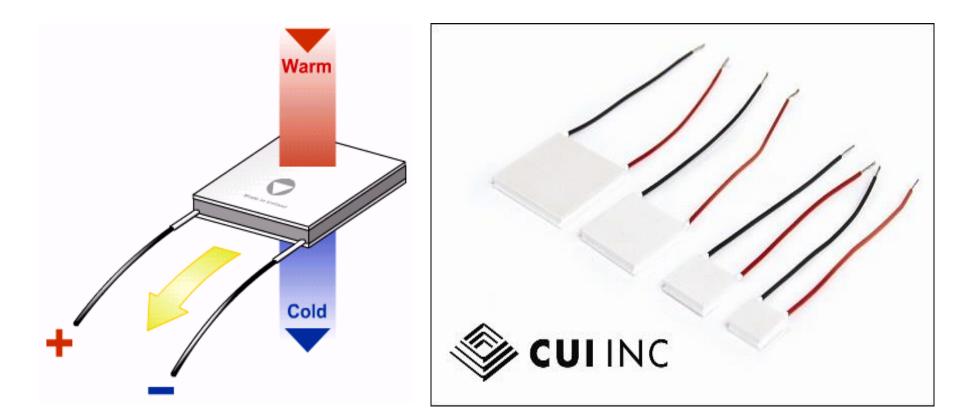
•50% energy generated by body is FIR


o FIR heating increases cellular metabolism

•Heats tissue up to 4-6 cm below skin


Far Infrared Heating

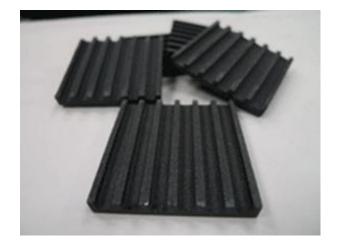
Major Pros: Deep tissue penetration, very safe Major Cons: No cold capabilities


Peltier Heating

Peltier Heating

Major Pros: Heat and cold capabilities

Major Cons: Poor durability


Pugh Chart of various "most ideal" therapy options

	Weight	Infrared	Peltier	Restitive
Safety	10	9	7	8
Cost	6	6	5	7
Ease of Use	5	8	8	8
Weight	5	7	10	9
Durability	7	7	4	10
Cold Capabilities	7	0	10	0
Totals	N/A	251	295	283

Material Considerations

Heat Sink

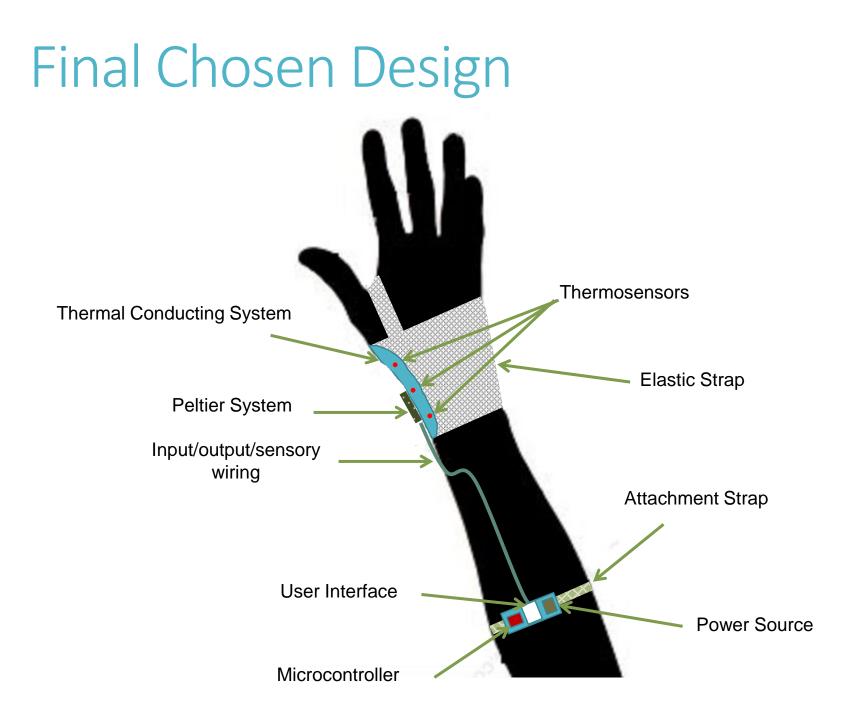
- Metals
- Ceramics/Non-Metals
- Plastics

Protection/Safety

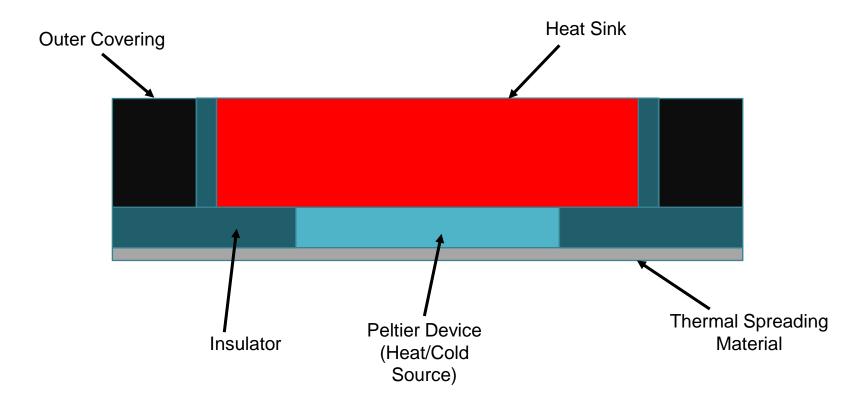
Thermally/electrically/mechanically Insulation

Heat Conducting Material

Thermally conducting metal
 O Spreads heat from peltier device to surrounding skin surface


Material Considerations

Thermal Sensor


- Thermistor
- Resistance Temperature Detectors (RTD)
- Thermocouples

Feedback Control

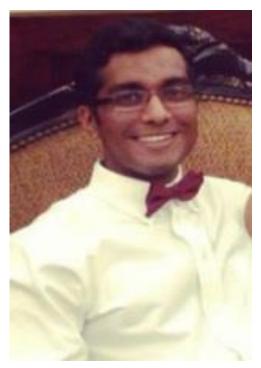
- •Digital
 - •Microcontroller
- •Analog

Peltier Component Design

Updated Design Schedule

	September					October					November				December		
Date	2	9	16	23	30	7	14	21	28	4	11	18	25	2	9		
Project Selection																	
Project Scope																	
Background Research																	
Patent Research																	
Preliminary Report																	
Preliminary Oral Report																	
Web Page																	
Drafting Design Options																	
Design Safe Report																	
Progress Oral Report																	
Progress Report																	
Designing CAD Prototype																	
Researching Components																	
Contacting Manufacturers																	
Designing Controller System																	
Analyzing System Thermodynamics																	
Final Report																	
Final Oral Report																	
Competition Poster																	

Updated Duties


<u>Keshav Kohli</u>

- Written Document Quality Control
- DesignSafe Analysis
- Lead Contact
- Manufacturing

Reith Sarkar

- CAD Design
- Materials
 Evaluation
- Sensor Options

Puneet Kumar

- Microcontroller Design
- Submits Weekly Reports
- Heat Sink Options

References

Van Manen, MD; Nace, J; Mont, MA (November 2012). "Management of primary knee osteoarthritis and indications for total knee arthroplasty for general practitioners." *The Journal of the American Osteopathic Association* **112** (11): 709–715.

Conaghan, Phillip. "Osteoarthritis — National clinical guideline for care and management in adults" (PDF). Retrieved 2008-04-29. Samuel, Leslie. "Interactive Biology, by Leslie Samuel." *Interactive Biology by Leslie Samuel*. N.p., n.d. Web. 01 Oct. 2013.

Dawson-Hughes, B., Ge Dallal, Ea Krall, L. Sadowski, N. Sahyoun, and S. Tannenbaum. "A Controlled Trial of the Effect of Calcium Supplementation on Bone Density in Postmenopausal Women." *International Journal of Gynecology & Obstetrics* 35.3 (1991): 284. Print. Spector, T. "Risk Factors for Osteoarthritis: Genetics." *Osteoarthritis and Cartilage* 12 (2004): 39-44. Print.

Hart, Deborah J., David V. Doyle, and Tim D. Spector. "Incidence and Risk Factors for Radiographic Knee Osteoarthritis in Middle-aged Women: The Chingford Study." *Arthritis & Rheumatism* 42.1 (1999): 17-24. Print.

Matullo, Kristofer S., Asif Ilyas, and Joseph J. Thoder. "CMC Arthroplasty of the Thumb: A Review." *Hand* 2.4 (2007): 232-39. Print. "Definition: Subluxation." *About.com Orthopedics*. N.p., n.d. Web. 01 Oct. 2013.

Kumar, Puneet, Reith Sarkar, and Keshav Kohli. Pain Alleviation in Carpometacarpal (CMC) Arthritis Splint: Preliminary Report. N.p., n.d. Web. 26 Oct. 2013.

Tepperman, PS, and M. Devlin. "The Therapeutic Use of Local Heat and Cold."*Canadian Family Physician* 32 (1986): 1110-114. Print. Denegar, CR, DR Dougherty, JR Friedman, ME Schimizzi, JE Clark, BA Comstock, and WJ Kraemer. "Preferences for Heat, Cold, or Contrast in Patients with Knee Osteoarthritis Affect Treatment Response." *Clinical Interventions in Aging* 5 (2010): 199-206. Print.

Bellman, S., and J. Adams-Ray. "Vascular Reactions After Experimental Cold Injury: A Microangiographic Study on Rabbit Ears." *Angiology* 7.4 (1956): 339-67. Print.

Belli, Evaristo, Guido Rendine, and Noemi Mazzone. "Cold Therapy in Maxillofacial Surgery." *Journal of Craniofacial Surgery* 20.3 (2009): 878-80. Print.

"Thermoelectric Cooler Basics." *TEC Microsystems*. TEC Microsystems, n.d. Web. 27 Oct. 2013.

"Do Arthritis Gloves Help?" *HubPages*. N.p., 6 Dec. 2010. Web. 19 Oct. 2013.

"DIABETES CAUSES, SYMPTOMS AND EFFECTS." *Diabetes Symptoms*. 2012 Diabetes Prevention and Control Alliance, n.d. Web. 26 Oct. 2013. Chen, AH, SG Frangos, S. Kilaru, and BE Sumpio. "Intermittent Pneumatic Compression Devices -- Physiological Mechanisms of Action." *NCBI*. U.S. National Library of Medicine, n.d. Web. 29 Oct. 2013.

"Breo IPalm520 Hand Massager." Breo USA. N.p., n.d. Web. 29 Oct. 2013.

Callister, William D., and David G. Rethwisch. *Materials Science and Engineering: An Introduction*. Hoboken, NJ: John Wiley & Sons, 2010. Print.

Questions?